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Abstract
The story about a properly oriented outdoor globe in the hands and minds of
Eratosthenes, Jefferson, Milanković and science educators is presented.
Having the same orientation in space as the Earth, the Day Night Year Globe
(DING) shows in real time the pattern of illumination of the Earth’s surface
and its diurnal and seasonal variations. It is an ideal object for the visualization
of knowledge and increase in knowledge about: the form of the Earth, Earth’s
rotation, Earth’s revolution around the Sun, the length of seasons, solstices,
equinoxes, the longitude problem, the distribution of the Sun’s radiation over
the Earth, the impact of this radiation on Earth’s climate, and how to use it
efficiently. By attaching a movable vane to the poles, or adding pins around
the equator to read time, DING becomes a spherical/globe-shaped sundial. So,
the DING is simultaneously useful for teaching physics, geophysics, astron-
omy, use of solar energy and promoting an inquiry-based learning environ-
ment for students and the public.

Keywords: globe, spherical sundial, Eratosthenes, Jefferson, Milanković,
insolation of Earth, scientific visualization

(Some figures may appear in colour only in the online journal)

1. Introduction

The terrestrial globe, which has been widely used in education, is mounted on a support in
such a way that its axis of rotation makes a fixed angle with the plane of the horizon. Such a
globe is useful in teaching geography and in representing political and other kinds of maps.
But such a globe cannot be useful in teaching the effects on Earth which depend on Earth’s
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orientation in space, i.e. on its orientation with respect to the Sun. For these purposes an
outdoor static globe that has the same orientation in space as the Earth is necessary. We shall
name it the Day Night Year Globe (DING), by slightly modifying earlier proposed names and
abbreviations Day Night Globe—DNG (Geva 2002) and Dan I Noć na Globusu—DING

Figure. 1 DING in Šabac, Serbia. The day–night line (a) lies along the meridian during
the spring equinox and (b) makes an angle of 23.5° with the meridian during the
summer solstice. Figures 1(a) and (b) are reproduced with the kind permission of
Europhysics News from Božić (2013).

Figure 2. (a) Wonder globe created by Replogle (Replogle Globe 2013). It offers
smooth rotation around two different axes; (b) The OmniGlobe (Old Dominion
University 2011) located in the foyer of the Physical Science Building of Old
Dominion University in Norfolk, VA, displaying a spherical projection of sea surface
temperature (with kind permission of Charles I Sukenik who took the photo).
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(Topalović and Božić 2011). Since the beginning of this century, static globes positioned in
this way were erected in the Clore Garden of Science in the Wiezmann Institute in Israel
(Geva 2002, Sharon 2005, Božić and Ducloy 2008), near the Max Valier Observatory in Italy,
in the courtyard of the Tre University in Rome (Altamore et al 2010), in the Center for
Advanced Education of Teachers in Šabac, Serbia (Božić 2013) (figure 1), in the Science park
in Zurich (Garoon Gateway to Science 2010) and other locations. In the same period pro-
ducers of globes created globes which offer exceptionally smooth two-axis rotation. The
globe with two-axis of rotation produced by Replogle Globes was named Wonder Globe
(Replogle Globes 2013). Such a globe may be positioned at any place on Earth so to have the
same orientation with respect to the Sun as the Earth itself (figure 2(a)). In this way, as long as
it stands in open space without being moved or rotated, Wonder Globe functions as Day
Night Year Globe—DING.

Figure 3. (a) Pharaoh Akhenaten and his family adoring the ancient Egyptian solar
deity Aten—disk of the Sun. This Pharaoh Akhenaten image has been obtained by the
author(s) from the Wikimedia website (Wikipedia 2016) where it was made available
by Magnus Manske under a CC BY-SA 2.0 licence. It is included within this article on
that basis. It is attributed to Jean-Pierre Dalbéra. (b) The Sun in the hands of Jelena
Banjac, the winner of the Physics Talent Search Competition in 2005 in Serbia and of
the Kodak Photo Competition in 2006 (with kind permission of the Serbian Physical
Society, the publisher of Mladi Fizičar). (c) The celestial sphere above the observer’s
local horizon.
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OmniGlobe (Old Dominion University 2011, ARC Science Simulations 2015) uses
artificial light sources, instead of the Sun, for demonstration and simulation of various phe-
nomena on Earth. It is equipped with two projectors and a hemispheric mirror inside the five-
foot translucent globe, and a library of digital imagery provided by the instrument’s computer
component housed in a nearby kiosk. The OmniGlobe (figure 2(b)) can project a range of
geospatial data from the wide field of Earth and planetary sciences.

The need, advantages, and usefulness of using a DING in education and public under-
standing of science will be exposed and explained here following the historical development
of concepts and human knowledge related to the form of the Earth, Earth’s rotation about its
axis, Earth’s revolution around the Sun, longitude problem, time keeping and the distribution
of sunlight and radiation over the Earth.

In section 2 we explain the rule for setting a globe in a position so that it has the same
orientation in space as the Earth. This rule is discussed by comparing the relevant concepts
associated with the idea of the Earth as a plate with the concepts associated with a spherical
Earth. Section 3 is devoted to the invention of the scaphe and Eratosthenes’ measurement of
Earth’s size in the antiquity and in the schools of today. In section 4 we describe the mapping
of Earth’s daily rotation onto a DING and the use of this mapping in the construction of a
spherical and globe sundial, as well as in the explanation of solar time, standard time and
equation of time. The mapping of Earth’s revolution around the Sun onto a DING, in
particular the variation of the angle between th DING’s axis and circle of illumination during
one orbital year, is studied in section 5. In section 6 we argue that a DING might be useful in
teaching about the insolation of Earth in the context of the efficient use of solar energy, as
well as about secular changes of climate on Earth. In section 7 we conclude that a DING is
simultaneously useful for promoting an inquiry-based learning environment for students,
teachers and public and in teaching the nature of science (NOS).

2. From the idea of Earth as a plate to the spherical Earth

Although man has observed the Sun and Moon since pre-history (figures 3(a) and (b)) and
could note their spherical shape, the idea of the spherical Earth appeared only around the third
century BC (Gore 1891). Previously, the idea of the Earth as a plate prevailed, because the
Earth appeared to an observer on its surface as a vast plain, with the horizon (figure 3(b))
supporting the sky as a dome-shaped ceiling (figure 3(c)). The line perpendicular to the
horizon plane pierces the celestial sphere at the point called the zenith (figure 3(c)). The line
from the observer pointing towards the North Celestial Pole (NCP) is the next important line.

Figure 4.An observer stands on the Earth looking at the sky. The local horizon plane is
tangent to the Earth beneath an observer (Kemble 1966).
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The plane defined by the normal to the horizon plane and the line from the observer’s position
towards the NCP defines the local meridian plane. The intersection of this plane with the
celestial sphere defines the local celestial meridian. The intersection of the local meridian
plane and horizon plane defines the local geographic meridian. This line is at the same time
the projection onto the horizon plane of the line from the observer’s position to the NCP.

All these concepts, formed in the period when the idea of the Earth as a plate dominated,
remained important and useful during the development of the idea and knowledge of the
Earth as a sphere. The horizon plane remained an important concept because the horizon
plane coincides with the tangent plane of a spherical Earth at the observer’s position
(figure 4).

The line perpendicular to the horizon plane leads to the zenith. Its prolongation towards
the center of the spherical Earth lies along the radius connecting Earth’s center and observer’s
position. The line from the observer’s position to the NCP to a very good approximation
coincides with the line connectingthe Earth’s center and NCP, i.e. the Earth’s south–north
axis. This is in fact the Earth’s axis of rotation.

These concepts are necessary and sufficient to set a globe in such a position that it has the
same orientation in space as the Earth, i.e. to become a DING. The tangent plane of the DING
at the point on the globe representing the DING’s position has to be parallel to the horizon
plane at this position (see figure 4(b) in Božić et al 2005). This means that the point on the
DING that represents its position on Earth should be on the top. For example, Rehovot is at
the top of the DING erected at the Weizmann Institute (Geva 2002, Sharon 2005) and Rome
is at the top of the DING erected at the Tre University in Rome (Altamore et al 2010).

The south–north axis of the DING has to be parallel to the Earth’s south–north axis.
Therefore, it is inclined with respect to the horizontal plane at an angle equal to the latitude of
the site. Its projection on the horizontal plane lies along the local geographic meridian. This
provides a practical method for properly orienting the DING’s axis.

Figure 5. Measurement of the Sun’s altitude using: (a) obelisk (vertical gnomon) and
(b) gnomon in a hemispherical bowl with scale.
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3. Invention of scaphe and the measurement of Earth’s size

From the above description it is clear that a DING is very useful to teach concepts associated
with the idea of the Earth as a plate developed to concepts associated with the spherical Earth.
In addition, a DING is very useful to visualize these concepts and to use them in teaching how
the advent in the speculations about the size of the Earth were made in the third century BC.
Thanks to Aristarchus’ improvements of the instrument gnomon-shadow measurer, Era-
tosthenes not only put forward the idea of a spherical Earth, but devised a method to
determine its circumference (Gore 1891, Weir 1931, Decamp and Hosson 2012).

The gnomon was unquestionably known to Chadleans and ancient Egyptians as well as
by Anaximander (611–546 BC) and/or his pupil Anaximenes. A gnomon consisted of a pin
standing perpendicularly upon a horizontal plane on which it casts its shadow (figure 5(a)).
The length and the direction of the shadow change during the day and they used these
phenomena to measure time.

Aristarchus of Samos (∼310–230 BC) improved the gnomon instrument by substituting
for the plane a hemispherical bowl—scaphe (figure 5(b))—and placed in its lowest interior
point a peg equal in length to the radius and perpendicular to the plane to which the bowl was
attached. Concentric equidistant circles, drawn about this peg on the inner surface of the
bowl, formed the scale by which the Sun’s altitude was directly read from its shadow. This
invention is of great importance, since it was the forerunner of all angle-measuring devices
where a graduated circle is employed (Gore 1891).

The scaphe was also used to determine the latitude of the place. On the equinoctial day,
the noon Sun casts no shadow at the equator, hence the angular length of the Sun’s shadow at
any other point on this day when it is on the zenith will give the angular distance of that point
from the equator or its geographical latitude.

From Cleomedes’ account (first century AD) of the measurement of the Earth’s cir-
cumference as performed by Eratosthenes about 200 BC, it is now known (Gore 1891,
Weir 1931, Decamp and Hosson 2012) that Eratosthenes used a scaphe in his measurement.
Eratosthenes (∼284–194 BC), director of the famous Library of Alexandria, learned from

Figure 6. Illustration of Eratosthenes’ procedure, similar to the illustration in Weir’s
translation (1931) from the Greek of Cleomedes’ account of Eratosthenes’
measurement.
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books that in Syene, at the time of the summer solstice and at noon local solar time, the Sun
illuminates the bottom of the well, meaning that the Sun will cast no shadow of an erect
object. Eratosthenes knew that the latitude of Syene (now Aswan) in South Egypt, was a little
less than the latitude of the Tropic of Cancer. Considering that Alexandria and Syene lay on
the same meridian (Weir 1931) he observed the shadows of the columns in Alexandria during
the next summer solstice and measured the angle b at that day using a scaphe (figures 5(b)
and 6). According to Cleomedes (Weir 1931), Eratosthenes found that the angle b is one-
fiftieth of the whole circle (b =  ¢ = 7 12 7.2 , as we write today). So: ‘Whatever proportion
then the arc in the scaphe holds to its complete circle, the arc from Syene to Alexandria holds
the same. But the arc in the scaphe is found to be the one-fiftieth part of the whole circle.
Necessarily, therefore, the interval from Syene to Alexandria is the fiftieth part of the great
circle of the Earth. And this is five thousand stadia. Hence, the whole circle becomes 25
myriad (250 000) stadia’ (Weir 1931).

Using mathematical symbols (figure 6) and relations this reasoning is written as follows:
=s l d O2 , where O is Earth’s circumference. Eratosthenes found that the arc in the scaphe

was one-fiftieth of the whole circle, i.e. =s l2 1 50. Therefore, =d O 1 50. Taking that
d=5000 stadia, the whole circle becomes O=250 000 stadia.

Today, we do not know exactly what distance a stadium meant to Eratosthenes. Based on
actual sizes of Greek stadia, it must have been about 1/6 km (Bennett et al 2004). Thus, the
quantities are = =d 5000 6 km 833.3 km( ) and = ⋅ =O d50 41665 km. This value for O
is quite close to the modern value of just over 40 000 km.

On the basis of a rather simple model of the Earth’s insolation, Babović and Babović
(2014) generalized Eratosthenes’ method and derived a new formula for determining the
length of the year for all planets with sufficiently small eccentricity.

Eratosthenes’ measurement and the historical scientific process which led to it are an
ideal example that shows ‘that historic process often promotes a dynamic view of science that
is useful for the implementation of inquiry-based teaching learning sequences’ (Hos-
son 2008). Many collaborative educational projects and activities have been realized since
1996, when four students proposed to their science teacher Karen Nishimoto, at Punahou
School in Honolulu, Hawaii, to do ‘something like Eratosthenes’s experiment’ as their annual
science project (Nishimoto 1996). Melanie, Alex, Elise and Kawika performed a true inquiry-
based experiment because they had to perform the experiment during winter, and none of the
seven schools they contacted were directly north or south of Hawaii. To find answers to their
questions, a student consulted Arno Penzias, Nobel prize winner and head of research at Bell
Laboratories at that time. The internet was not yet so accessible, so students collected data
from companion schools by e-mail.

Starting September 2000, thousands of students from 8 to 14 measured the Earth’s
circumference by observing the shadow of a vertical stick at solar noon during lectures at
school. They exchanged their results with companion schools through the internet and
deposited the results at the web site of the project ‘Following the footsteps of Eratosthenes’
(Sur le pas d’Eratosthene 2000, Folco et al 2002).

2180 students from 89 schools in five different countries (Finland, Poland, Serbia,
Greece, Egypt) completed Eratosthenes’ experiment on the same day in the framework of the
multinational European Science Education Initiative (acronym: OSR). Working groups of up
to four students collected the measurement scores within their school sites, which by selection
covered about 30 degrees of latitude (Sotiriou and Bogner 2015). The analyses clearly show
more accuracy in the scores as the measurement sites become more distantly located (within
Greece: 17.6% error; Greece–Finland: 1.3% error). The results of Eratosthenes-like
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measurements with observers located in Australia and New Zealand were published by
Longhorn and Hughes (2015).

For future inquiry-based projects based on Eratosthenes’ measurement we have three
proposals.

a. Student should start to use a scaphe in addition to a gnomon. By using a scaphe the
experiment would be closer to the original experiment as pointed out by Decamp and
Hosson (2012). Apart from this, students would learn how a protractor came to be used
for measuring angles. Students would understand that it is not necessary to use
trigonometry in order to measure the angle that the Sun’s rays make with a gnomon.

b. Knowing Archimedes’ relation between the circumference of the circle and its radius,
p=O R 2 , one easily finds the value of the Earth’s radius which follows from

Eratosthenes’ result, =R 6631 km. This value is close to the value =R 6370 km of the
mean radius of the Earth, determined by modern techniques. But, an interesting historical
question arises: did Eratosthenes know Archimedes’ relation? Looking for the answer to
this question through educational projects motivated by inquiry-based learning would be
interesting, useful and stimulating.

c. To visualize Eratosthenes’ reasoning using a DING by attaching sticks at few places
along observer’s meridian.

4. Mapping of the Earth’s daily rotation onto a DING

The most important feature of a DING is that its illumination by the Sun’s ray is analogous to
the illumination of the whole Earth by the Sun’s rays. We may say that there is a mapping
between the Earth’s illumination and the illumination of a DING. Due to this, by observing
how the illumination of a DING changes during the day and during the year, students may
simultaneously follow the effects of the daily rotation of the Earth and yearly revolution
around the Sun on the whole Earth. As such, a DING has many advantages over two
dimensional drawings presenting these effects in standard textbooks. It was pointed out by
Szostak (1999), that such experience is very important for students because it directly shows

Figure 7. Inflated globe sundial with pins attached around its equator is a hands-on
version of the spherical sundial erected that is made of marble near the Max Valier
Observatory in Italy (Peer S.r.l. 2016).
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that phenomena happening on a large scale in the Universe may be studied and understood by
observing phenomena in the local laboratory and environment on the Earth.

At any moment during a sunny day, students may observe the current position of the
day–night line (circle) on the Earth (figure 1), i.e. where it is dawn and where the Sun is
setting at the horizon. By following the motion of this circle around a DING, they may see the
effect of the Earth’s rotation around its own axis, which is analogous to the effect one could
see by observing the Earth from a satellite. By measuring how fast the day–night line moves
students may calculate the Earth’s angular velocity.

Students may also follow how changes of certain optical quantities, which are due to this
rotation, depend on the position on the Earth. Nice examples of such quantities are lengths
and directions of shadows of vertical pins put around the equator of a DING (figure 7). Due to
this, a DING with pins around the equator, or with a movable vane (figure 8), serves as a
sundial–globe/spherical sundial.

Figure 8. Jefferson’s sundial was reproduced in Monticello in 2001. It is mounted on
capital designed by Latrobe, for the columns in the vestibule of the senate chambers in
Washington, DC.

Figure 9. Declination of the Sun, hour angle and day–night line. The hour angle is
denoted by h.
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4.1. DING with pins around the equator or a movable vane–the globe/spherical sundial

The spherical sundial erected in 2006 in the vicinity of the Observatory ‘Max Valier’ in Italy
(Peer S.r.l 2016) is in fact a DING with metal pins along the equator. There is a pin at each
15° longitude, and a pin at the intersection point of the local meridian with the equator. A
hands-on realization of such a spherical sundial (Božić and Ducloy 2008) is shown in
figure 7.

The shadows of the pins show whether the Sun is north or south of the equator. At the
equinoxes, the shadows of all pins fall along the equator. The shadow of any pin is shortest at
local noon when the Sun ‘crosses the local meridian plane’ and reaches the highest point in
the sky. At that moment the Sun’s ray lie in the local meridian plane (figure 9)—the Sun is
due south. With the help of the shadows of the pins one can determine approximately the
local solar time. The current solar time at the sundial’s location is read by looking for the pin
with the shortest shadow and its longitudinal distance from the local pin.

This longitudinal distance is associated with the angular distance between the meridian of
the observer and the meridian whose plane contains the Sun. In astronomy, it is called the
hour angle (figure 9). The hour angle is zero at solar noon (12:00 h). The hour angle increases
by 15° every hour.

There is an instrumental error in the readings on the globe with pins, due to the fact that
the angular distance of the pins is 15°. In the case of Jefferson’s spherical sundial (figure 8)
this type of error is reduced because this dial has a movable vane instead of fixed pins. The
current solar time can be determined by moving the vane, made of a thin sheet iron that pivots
on the north and south poles. One rotates it about the polar axis until it casts the least shadow
on the sphere. In this way one finds the meridian (the longitude) where it is the solar noon at
that moment.

Despite the fact that it is strikingly simple to understand the functioning and scaling of a
spherical/globe sundial, other types of sundial, horizontal sundials for example, have been
and are still much more present all over the world. The scales of most widespread sundials are
not uniform; they depend on the position on the Earth and usually it is necessary to apply
space geometry, trigonometry and sometimes spherical trigonometry in order to determine
their scales (Rohr 1970, Erichson 1974, Jasperson and Fitz-Randolph 1977, Zanetti 1984).

The globe sundial has advantages over other types of sundial not only because of its
simplicity but also because it is useful as a starting point in teaching the history and principle
of the functioning of sundials, as well as in facilitating the understanding of methods of
determination of scales of various sundials (Božić and Ducloy 2008). In arguing the
adventages of the spherical sundial, Jefferson’s experience (Wilson 2005) in constructing and
using a spherical sundial is particularly interesting.

Jefferson’s spherical sundial was made in Monticello by Jefferson sometime between
August 1809 and September 1816 (Wilson 2005). In 1806, the architect Benjamin Henry
Latrobe sent Jefferson (then already retired president) the full-scale model of a capital he had
designed for the columns in the vestibule of the senate chambers in Washington, DC and an
the horizontal dial cut in Pennsylvanian marble of a proper size to be put on a capital. In 1816
Jefferson sent Letrobe the drawing of his own design of a sundial mounted on Latrobe’s
capital (Thomas Jefferson Foundation, Inc. 2002).

Jefferson explained that he came to this invention thanks to his efforts to find a simple
method to determine the longitude of Monticello. At that time, the longitude problem, both at
land and at sea, was a challenging problem worldwide, as was well described by Bensky
(2010). Bensky also proposed a longitude-based international and general education physics
course. Latrobe concurred in the uniqueness of the spherical dial and responded, ‘In respect to
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your Dial, I can only say that its principles are so plain, and its construction so easy, that dials
on Your construction might be brought into very general use, if once known and introduced’.
(Wilson 2005). Later the dial was lost. The Thomas Jefferson Foundation reproduced it in
2001 (Beiswanger 2001).

4.2. Solar, sidereal and standard time, equation of time

It is useful to understand the functioning of a spherical sundial because it is tightly connected
with the fundamental unit of time measurement—the mean solar day. The mean solar day is
the average over the entire year of the solar day, which is the period of time during which the
Earth completes one rotation with respect to the Sun. The time of one complete rotation with
respect to the Sun is seen by an observer on the Earth as the time between two consecutive
passages of the Sun through the plane of the local meridian.

The mean solar day is the base of the primary time scale, Universal Time (previously
called Greenwich Team Time) which is still measured at the Prime Meridian. This is a 24 h
time system, according to which the length of a day is 24 h=86 400 s (more precisely 86
400.002 s in recent decades) and midnight is 0 h. There are about 365.2422 solar days in one
mean tropical year.

The clock time which we read in our everyday life is based on the system of standard
time zones, which were introduced around 1880 in such a way as to have 12:00 noon be
approximately in the middle of the day regardless of the longitude. These are geographic
regions, approximately 15 degrees of longitude wide, in principle centered about a meridian
along which local standard time equals mean solar time. A DING with pins along the equator
(figure 7) visualizes this principle. However, time zones often have unusual shapes to con-
form to social, economic, and political realities, so larger variations between standard time
and means solar time sometimes occur.

Two effects contribute to the variation of the solar day over the course of the year. The
first effect is due to the Earth’s varying orbital speed along the orbit. The second effect is due
to the tilt of the Earth’s axis with respect to the ecliptic. Together, the two effects make the
actual length of solar days vary up to about 25 s (either way) from 24 h. Because the effects
accumulate, at particular times of year the apparent solar time can differ by as much as 17 min
from the mean solar time. The net result is often depicted visually either as an analemma or on
a graph as ‘the equation of time’. The ordinate at any point of the equation of time is equal to
the difference between the mean solar time (standard time) and the true solar time on the
corresponding date.

In astronomy and orbital mechanics the concept of stellar or sidereal time is often used—
the span of time it takes for the Earth to make one entire rotation with respect to the celestial
background or a distant star (assumed to be fixed). This period of rotation is about 4 min less
than 24 h (23 h 56 min and 4.1 s) and there are about 366.2422 stellar days in one mean
tropical year (one stellar day more than the number of solar days). The reason that solar day is
longer than the sidereal day lies in the fact that a sidereal day reflects one full rotation of Earth
and the solar day reflects the full rotation of the Earth and its motion along the orbit. While
‘orbiting’ the Sun, one rotation still returns a fixed observer to pointing a distant star; but
slightly more than one full rotation is necessary to return an observer to pointing at the Sun.

5. Mapping the Earth’s revolution onto a DING

In addition to the rotation around its axis, the Earth orbits around the Sun (Copernicus 1543)
in the plane, called ecliptic. The angle between the Earth’s axis and normal to the ecliptic at
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present equals 23.5°. During one revolution of the Earth around the Sun, the direction of the
Earth’s axis is constant in space to a very good approximation. But, the angle between the
direction of the Earth’s axis and the Sun’s rays changes during this motion. In figure 10 this
change is presented by projecting on the plane of ecliptic, where h is the angle between the

Figure 10. The angle between the plane of the circle of illumination and the Earth’s axis
changes during the Earth’s revolution because the angle h between the direction of the
Sun’s rays (along the line connecting centers of the Sun and Earth) and the projection
¢

n of the Earth’s axis on the ecliptic changes. The eccentricity of the Earth’s orbit is
neglected in this figure.

Figure 11. Drawing of essential parameters of the Earth’s orbit considered in
Milankovitch’s (1941) theory. The Earth’s orbit around the Sun is an ellipse with the
Sun in one focus of this ellipse. The z-axis at the Sun’s position is normal to the plane
of the ecliptic. The z-axis and Earth’s rotation axis determine the plane E. The y-axis is
along the intersection of this plane with the plane of the ecliptic. The x-axis is normal to
the y-axis. The cardinal points, denoted by I, II, III and IV, correspond to the spring
equinox, summer solstice, autumn equinox and winter solstice, respectively. At present
the angle between the major axis of the ellipse and the y-axis equals 12.5°
(Goyder 2006).
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direction of the Sun’s rays and the projection ¢

n of the Earth’s axis on the ecliptic. The angle h

increases from 0 to p2 during one revolution of the Earth. The values h = 0 and h p=
correspond to winter and summer northern solstices, respectively. The values h p= 2 and
h p= 3 2 are vernal and autumnal northern equinoxes, respectively.

The Sun’s rays touch the Earth’s surface along the circle of illumination (figures 1 and 9),
which lies in the plane that is normal to the ecliptic and perpendicular to the Sun’s rays. The
angle between the plane of the circle of illumination and Earth’s axis ( figure 9) is equal to the
declination of the Sun. The declination of the Sun by definition is equal to the angle between
the Sun’s rays (the line connecting the centers of the Earth and Sun) and the Earth’s equatorial
plane. This angle varies during the Earth’s orbital motion (see for example figure 2.15 in
Benett et al 2004). At equinoxes this angle is zero, the Earth’s axis lies in the plane of the
circle of illumination. At the summer solstice and winter solstice this angle is equal to 23.5°
and −23,5°, respectively. During other days this angle lies in the interval (−23.5°, +23,5°).

On a DING, as a small Earth, the Sun’s rays also trace the great circle analogous to the
circle of illumination on the Earth. The angle between the circle of illumination on a DING
and its axis change from day to day, following the above-described changes on the Earth. So,
the Earth’s revolution is mapped on a DING and may be followed from day to day during a
year (figures 1(a) and (b)). Students may measure this angle during sunny days in the course
of a year and compare the measured values with the values of the Sun’s declination published
in the literature, for example in the Astronomical Almanac.

In reality, the Earth’s orbit around the Sun is an ellipse (Kepler 1609, Kemble 1966), the
Sun being in one focus of this ellipse (figure 11). The focus S lies on the line connecting the
perihelion (P) and ahelion (A) points. The eccentricity of the Earth’s orbit at present is
=e b a=0.0167. The cardinal points, denoted by I, II, III and IV correspond to the spring

equinox, summer solstice, autumn equinox and winter solstice, respectively. Due to the
elliptic shape of the orbit the time intervals between the Earth’s passage through these points
are not equal. Students could determine these intervals by recording the angle between the
plane of the line of illumination and the Earth’s axis as a function of time during the year (the
Earth’s position on the orbit) and compare these values with the values given in the literature.

In the long term (tens of thousands of years), the cardinal points I, II, III, IV do not
remain at the same points along the orbit, but move along it with time (Milanković 1920,
Milankovitch 1941). This means that the relative distance between the cardinal points and
perihelion point P and aphelion point A change, too. This affects the length of seasons;
summer half-year, and winter half-year. The causes of these variations are the secular changes
of parameters of the Earth’s motion (the eccentricity of its orbit, the direction and obliquity of
its axis), which are due to the gravitational interaction between the Earth and other planets and
to the non-spherical shape of the Earth. More specifically:

1. The Earth’s long semi-axis a remains constant but its eccentricity =e b a changes
quasi-periodically; the most important is the variation with period about 96 000 years.

2. With the period of 26 000 years (the Platonic year) the axis SN t( ) describes the circular
cone, depicted in figure 11. These variations cause variation of the angle pg t( ) between
the x(t) axis and the major axis of the Earth ellipse.

3. The angle e e= t( ) which SN t( ) makes with the z-axis—Earth’s obliquity—has been
changing with a period of about 41 000 years and an amplitude of approximately 1.3°.
Currently, the obliquity amounts to some 23.5°, which is close to the mean value over the
period.

Therefore, the Earth’s axis does not point always to Polaris (as is the case now). The
maximal angle between the plane of the line of illumination and Earth’s axis oscillates
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between 22.1° and 24.5°. Variations of pg cause variations of the length of time between
equinoxes and solstices.

6. Applying a DING in teaching about insolation of the Earth and use of solar
energy

A DING, as a model of the Earth, is also useful in teaching about various aspects of the
insolation of the Earth. During a sunny day it is possible to feel by touching that the
illuminated surface is much warmer than the surface of the shaded side. More subtle temp-
erature differences exist even on the surface of the illuminated half of the DING. This is
registered by touching at the equator and at the higher latitudes along the same meridian.
Using a thermometer one can quantitatively measure these temperature differences, which are
due to the differences in angle at which sunlight hits the surface. For example, in October,
daylight in Antarctica lasts longer and longer. However, because of the difference in the angle
of incidence between the equator and Antarctica, Antarctica is much cooler than the tropics.

In modern times, the studies of insolation of the Earth are very important in research on
climate change (Berger et al 2005), as well as in research on the efficiency and usage of solar
cells (Stine and Geyer 2001, Khavrus and Shelevytsky 2010). Regarding climate change on
Earth, there has been an ongoing discussion and controversy between proponents of man-
made causes and proponents of natural causes.

The secular variations of the parameters of the Earth’s orbit give rise to changes in
insolation (the amount of radiation received at the top of the atmosphere of the Earth), and on
the physical mechanisms governing the propagation of the received energy through the
atmosphere and the response at the Earth’s surface. Milanković (1920) studied and computed
in full detail this correlation in his mathematical theory of thermic phenomena caused by solar
radiation. The secular changes of the parameters of Earth’s orbit have caused the secular
changes of climate on Earth, resulting in the series of ice ages with interglacial periods. Since
1950s much data have been gathered confirming Milanković’s explanation of the climate
change on Earth during last 600 000 years (Berger et al 2005, Knežević 2010). The most
important were the results of an investigation of deep-sea sediments published by Hays
et al (1976).

In studying the climate change of Earth it is important to consider the Earth as a whole
and its relation to the Sun. In this respect a DING as an element of a learning environment is
very useful because it reminds citizens and students to think about their role in climate change
and how to preserve the conditions for life on Earth. The intensive research in modern times
aimed at developing efficient solar cells has been motivated by this concern and the need for
renewable energy sources.

In order to understand how to build energy-effective houses and how to optimize solar
cell positions, one must first be able to predict the location of the Sun relative to the collection
device. In addition, the relative motion of the Sun with respect to the Earth will allow surfaces
with different orientations to intercept different amounts of solar energy. Therefore, there has
been a renewed interest in knowledge of basic astronomy; the Sun’s position in the sky,
sundial problem, Earth’s motion along the orbit, declination of the Sun, etc. Authors of books
and articles in this developing field emphasize the need to visualize (using computer software)
all employed coordinate systems and geometrical quantities, and to use geometry, vector
algebra and matrices in transforming coordinates from one coordinate system to another
(Stine and Geyer 2001, Probst 2002, Khavrus and Shelevytsky 2010, Jenkins 2013). This
shows that visualization of the Earth–Sun relations is considered to be very necessary in the
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development and use of solar energy systems. Therefore, a DING as a visualizing tool in the
learning environment might be very useful in teaching how to use power from the Sun.

7. Conclusion

Taking into account the elaborate arguments about the necessity of teaching the nature of
science/how science works (Hosson 2008, Duschl and Grandy 2013, Krogh and
Nielsen 2013, Abd-El-Khalic 2013) and to build an inquiring, inspiring and communicative
learning environment (Božić et al 2009, Nielsen 2013), in this paper we described how an
outdoor globe having the same orientation in space as the Earth (Day Night Year Globe—
DING) is applicable in this context. Designed and created by R Anati in the Clore Garden of
Science (Geva 2002, Sharon 2005) in Israel, it is the paradigmatic example of a cognitive
installation for school and university yards (Božić et al 2005, Altamore et al 2010) as well as
for science centers (Garoon Gateway to Science 2010).

In 2009, a DING was devised at Roma Tre University to celebrate the International year
of Astronomy and was named the Oriented World Globe (or Parallel Globe). Altamore et al
(2010) have been developing a set of educational activities addressed at secondary school
students that were proposed to interested teachers. The authors also showed that the Oriented
World Globe is a powerful tool to carry out simple and incisive educational activities for
students of every age. A DING, constructed from concrete at the Center for Professional
Advancement of Educators (CSU) in Šabac, Serbia (figure 1), has attracted substantial interest
among students, teachers, citizens and the media.

In this paper we relate the historical development of knowledge about the form of the
Earth, its size, tilt with respect to the ecliptic, internal rotation and orbital motion, time
measurement and insolation to geophysical and astronomical concepts visualized on the
DING. In particular, we elaborate how Eratosthenes, Jefferson and Milanković used an
oriented world globe in their research and discoveries.

Eratosthenes used such a globe in order to argue about the spherical shape of the Earth
and to determine its size. Collaborative educational school projects realized during recent
decades show that Eratosthenes’ method is ideal for implementation of inquiry-based learning
sequences.

Jefferson used this globe to consider the daily motion of the circle of illumination in
measuring time and determining the longitude of Monticello. A DING with pins around the
equator or with a movable vane is useful to understand the functioning of a spherical sundial
because it is tightly connected with the fundamental unit of time measurement—the mean
solar day.

The orientation of the Earth’s axis was essential to Milanković, who studied and eval-
uated the insolation of the Earth and related secular changes of the climate of the Earth to
secular changes of the parameters of the Earth’s orbit. In modern times, visualization of the
illumination of the Earth is very necessary in the study of time dependence of the insolation of
solar energy collectors at any place on Earth. As different from astronomy, where positions of
celestial bodies on the celestial sphere are of interest, in these studies, the positions and
orientations of solar collectors on the Earth are of interest. This implies that a DING might be
useful in teaching how to build energy-effective houses and how to optimize solar cell
positions.

Eur. J. Phys. 37 (2016) 065801 M Božić et al

15



Acknowledgments

MB acknowledges support from the Ministry of Education and Science of Serbia, under
projects OI171005 and III45016. MB and TM-T acknowledge support from the Center for
Promotion of Science, under the project ‘Inspiring environment for learning natural sciences’.
Certain images in this publication have been obtained by the author(s) from the Wikipedia/
Wikimedia website, where they were made available under a Creative Commons licence or
stated to be in the public domain. Please see individual figure captions in this publication for
details. To the extent that the law allows, IOP Publishing disclaim any liability that any
person may suffer as a result of accessing, using or forwarding the image(s). Any reuse rights
should be checked and permission should be sought if necessary from Wikipedia/Wikimedia
and/or the copyright owner (as appropriate) before using or forwarding the image(s).

References

Abd-El-Khalic F 2013 Teaching with and about nature of science, and science teacher knowledge
domains Sci. Educ. 22 2087–107

Altamore A, Bernieri E and Marinilli F 2010 The oriented world globe at roma tre university Galileo
and the Renaissance Scientific Discourse ed A Altamore and G Antonini (Roma: Edizioni Nuova
Cultura) pp 164–7

ARC Science Simulations 2015 OmniGlobe http://arcscience.com
Babović V and Babović M 2014 The Sun lightens and enlightens: high noon shadow measurements

Eur. J. Phys. 35 065005
Beiswanger W 2001 Spherical sundial The Jefferson Monticello https://monticello.org/site/research-

and-collections/spherical-sundial
Bennett J, Donahue M, Schneider N and Voit M 2004 The Cosmic Perspective (San Francisco, CA:

Pearson, Addison Wesley)
Bensky T J 2010 The longitude problem from the 1700s to today: an international and general education

physics course Am. J. Phys. 78 40–6
Berger A 2005 Preface Milutin Milanković Anniversary Symposium: Paleoclimate and the Earth

Climate system ed A Berger et al (Belgrade: Serbian Academy of Sciences and Arts) pp XI–XII
Božić M 2013 Inspiring learning environment—the school as a three-dimensional textbook Europhys.

News 44 22–6
Božić M and Ducloy M 2008 Eratosthenes’ teachings with a globe in a school yard Phys. Educ. 43

165–72
Božić M, Popović M and Savić I 2009 Out classroom installations for learning physics AIP Conf. Proc.

1203 1250–5
Božić M, Vušković L, Pantelić D, Nikolić S and Majić V 2005 School architecture and physics

education Phys. Teac. 43 608–11
Copernicus N 1543 De Revolutionibus Orbium Coelestium (Norimbergae: apud Ioh. Petreium)
Decamp N and Hosson C de 2012 Implementing Eratosthenes’ discovery in the classroom: educational

difficulties needing attention Sci. Educ. 21 911–20
Duschl R and Grandy R 2013 Two views about explicitly teaching nature of science Sci. Educ. 22

2109–39
Erichson H 1974 The horizontal sundial Am. J. Phys. 42 372–3
Folco E D, Hartmann M, Jasmin D and Farges H 2002 Mesurer la Terre est un jeu d’enfant. Sur les pas

d’Eratosthène (Paris: Le Pommier)
Garoon Gateway to Science 2010 Principles of science: Earth’s orbit and tilt http://

garoongatewaytoscience.com/index.php?s=globe
Geva U 2002 MathVentures http://forthinkingpeople.com/dowmloads/pdf_files/DayNightGlobe.PDF
Gore J H 1891 Geodesy (Cambridge: The Riverside Press) p 12–32
Goyder R 2006 The sundial problem from a new angle Eur. J. Phys. 27 413–28
Hays J D, Imbrie J and Shackleton N J 1976 Variations in the Earth’s orbit: pacemaker of the ice ages

Science 194 1121–32

Eur. J. Phys. 37 (2016) 065801 M Božić et al

16

http://dx.doi.org/10.1007/s11191-012-9520-2
http://dx.doi.org/10.1007/s11191-012-9520-2
http://dx.doi.org/10.1007/s11191-012-9520-2
http://arcscience.com
http://dx.doi.org/10.1088/0143-0807/35/6/065005
https://monticello.org/site/research-and-collections/spherical-sundial
https://monticello.org/site/research-and-collections/spherical-sundial
http://dx.doi.org/10.1119/1.3225922
http://dx.doi.org/10.1119/1.3225922
http://dx.doi.org/10.1119/1.3225922
http://dx.doi.org/10.1051/epn/2013203
http://dx.doi.org/10.1051/epn/2013203
http://dx.doi.org/10.1051/epn/2013203
http://dx.doi.org/10.1088/0031-9120/43/2/005
http://dx.doi.org/10.1088/0031-9120/43/2/005
http://dx.doi.org/10.1088/0031-9120/43/2/005
http://dx.doi.org/10.1088/0031-9120/43/2/005
http://dx.doi.org/10.1119/1.2136460
http://dx.doi.org/10.1119/1.2136460
http://dx.doi.org/10.1119/1.2136460
http://dx.doi.org/10.1007/s11191-010-9286-3
http://dx.doi.org/10.1007/s11191-010-9286-3
http://dx.doi.org/10.1007/s11191-010-9286-3
http://dx.doi.org/10.1007/s11191-012-9539-4
http://dx.doi.org/10.1007/s11191-012-9539-4
http://dx.doi.org/10.1007/s11191-012-9539-4
http://dx.doi.org/10.1007/s11191-012-9539-4
http://dx.doi.org/10.1119/1.1987703
http://dx.doi.org/10.1119/1.1987703
http://dx.doi.org/10.1119/1.1987703
http://garoongatewaytoscience.com/index.php?s=globe
http://garoongatewaytoscience.com/index.php?s=globe
http://forthinkingpeople.com/dowmloads/pdf_files/DayNightGlobe.PDF
http://dx.doi.org/10.1088/0143-0807/27/2/023
http://dx.doi.org/10.1088/0143-0807/27/2/023
http://dx.doi.org/10.1088/0143-0807/27/2/023
http://dx.doi.org/10.1126/science.194.4270.1121
http://dx.doi.org/10.1126/science.194.4270.1121
http://dx.doi.org/10.1126/science.194.4270.1121


Hosson C D 2008 Using historical reconstruction to implement inquiry-based teaching in primary
school Proc. of the Third South-East European School for Hands-on Primary science Education ed
S Jokić (Belgrade: Vinča Institute)) p 161–8

Jasperson J and Fitz-Randolph J 1977 From sundials to atomic clocks, understanding time and
frequency National Bureau of Standards Monographs (Washington DC: US Government Printing
Office) p 155

Jenkins A 2013 The Sun’s position in the sky Eur. J. Phys. 34 633–52
Kemble E C 1966 Physical Science, Its Structure and Development (Cambridge, MA: MIT Press)
Kepler J 1609 Astronomia Nova (Heidelberg: Voeqelin)
Donahue W H 1993 New Astronomy (Cambridge: Cambridge University Press) (translation of

Kepler 1609)
Khavrus V and Shelevytsky I 2010 Introduction to solar motion geometry on the basis of a simple

model Phys. Educ. 46 641–53
Knežević Z 2010 Milutin Milanković and the astronomical theory of climate changes Europhys. News

41 17–20
Krogh L B and Nielsen K 2013 Introduction: how science works—and how to teach it Sci. Educ. 22

2055–65
Longhorn M and Hughes S 2015 Modern replication of Eratosthenes’ measurement of the

circumference of Earth Phys. Educ. 50 175–8
Milanković M 1920 Theorie Mathematique des Phenomeses Thermiques Produits par la Radiation

Solaire (Paris: Gauthier-Villards et Cie)
Milankovitch M 1941 Kanon der Erdbestrahlung und Seine Anwendung auf das Eiszeitenproblem

(Belgrad: Koniglisch Serbische Akademie)
Nielsen K H 2013 Scientific communication and the nature of science Sci. Educ. 22 2067–86
Nishimoto K 1996 Tall shadows Tales from the Electronic Frontier (San Francisco, CA: WestEd)

p 22–9 (http://files.eric.ed.gov/fulltext/ED400776.pdf)
Old Dominion University 2011 The ODU OmniGlobe (http://lions.odu.edu/omniglobe/Omniglobe/

Welcome.html)
Peer S.r.l. 2016 Observatory Max Valier www.suedtirolerland.it/en/highlights/sights/observatory-

max-valier/
Probst O 2002 The apparent motion of the Sun revisited Eur. J. Phys. 23 315–22
Replogle Globe 2013 Wonder Globe http://replogleglobes.com
Rohr R J R 1970 Sundials: History, Theory and Practice (Toronto: University of Toronto Press)
Sharon O 2005 The Earth Reuven G Anati Designshop (Israel: Clore Garden of Science Wiezmann

Institute) (http://designshop.co.il/)
Sotiriou S and Bogner F X 2015 A 2200-year old inquiry-based, hands-on experiment in today’s science

classrooms World J. Educ. 5 52–62
Sur les pas d’Eratosthene http://fondation-lamap.org/eratos
Stine W B and Geyer M 2001 Power from the Sun http://powerfromthesun.net/book.html
Szostak R 1999 Simple hands-on experiment for teaching astronomy Hands-on Experiments in Physics

Education. Proc. ICPE-GIREP Int. Conf., Duisburg, Germany ed G Born (Duisburg: Didaktik der
Physik) p 124–9

Thomas Jefferson Foundation, Inc. 2002 Replica of spherical sundial installed Monticello Newsletter 13
1–2 (https://monticello.org/sites/default/files/inline-pdfs/2002ssndl.pdf)

Topalović T M and Božić M 2011 Serbia hosts teachers’ seminar Phys. Educ. 46 365–7
Weir J 1931 The method of Eratosthenes J. R. Astron. Soc. Canada 25 294–6
Wikipedia 2016 Akhenaten http://en.wikipedia.org/wiki/Akhenaten
Wilson G 2005 Marking time: Jefferson’s spherical sundial Chronicle of the Early American Industries

Association March 1–5
Zanetti V 1984 A sundial design Am. J. Phys. 52 185–185

Eur. J. Phys. 37 (2016) 065801 M Božić et al

17

http://dx.doi.org/10.1088/0143-0807/34/3/633
http://dx.doi.org/10.1088/0143-0807/34/3/633
http://dx.doi.org/10.1088/0143-0807/34/3/633
http://dx.doi.org/10.1088/0031-9120/45/6/010
http://dx.doi.org/10.1088/0031-9120/45/6/010
http://dx.doi.org/10.1088/0031-9120/45/6/010
http://dx.doi.org/10.1051/epn/2010301
http://dx.doi.org/10.1051/epn/2010301
http://dx.doi.org/10.1051/epn/2010301
http://dx.doi.org/10.1007/s11191-013-9582-9
http://dx.doi.org/10.1007/s11191-013-9582-9
http://dx.doi.org/10.1007/s11191-013-9582-9
http://dx.doi.org/10.1007/s11191-013-9582-9
http://dx.doi.org/10.1088/0031-9120/50/2/175
http://dx.doi.org/10.1088/0031-9120/50/2/175
http://dx.doi.org/10.1088/0031-9120/50/2/175
http://dx.doi.org/10.1007/s11191-012-9475-3
http://dx.doi.org/10.1007/s11191-012-9475-3
http://dx.doi.org/10.1007/s11191-012-9475-3
http://files.eric.ed.gov/fulltext/ED400776.pdf
http://lions.odu.edu/omniglobe/Omniglobe/Welcome.html
http://lions.odu.edu/omniglobe/Omniglobe/Welcome.html
http://www.suedtirolerland.it/en/highlights/sights/observatory-max-valier/
http://www.suedtirolerland.it/en/highlights/sights/observatory-max-valier/
http://dx.doi.org/10.1088/0143-0807/23/3/310
http://dx.doi.org/10.1088/0143-0807/23/3/310
http://dx.doi.org/10.1088/0143-0807/23/3/310
http://replogleglobes.com
http://designshop.co.il/
http://dx.doi.org/10.5430/wje.v5n2p52
http://dx.doi.org/10.5430/wje.v5n2p52
http://dx.doi.org/10.5430/wje.v5n2p52
http://fondation-lamap.org/eratos
http://powerfromthesun.net/book.html
https://monticello.org/sites/default/files/inline-pdfs/2002ssndl.pdf
http://en.wikipedia.org/wiki/Akhenaten
http://dx.doi.org/10.1119/1.13927
http://dx.doi.org/10.1119/1.13927
http://dx.doi.org/10.1119/1.13927

	1. Introduction
	2. From the idea of Earth as a plate to the spherical Earth
	3. Invention of scaphe and the measurement of Earth&#x02019;s size
	4. Mapping of the Earth&#x02019;s daily rotation onto a DING
	4.1. DING with pins around the equator or a movable vane-the globe/spherical sundial
	4.2. Solar, sidereal and standard time, equation of time

	5. Mapping the Earth&#x02019;s revolution onto a DING
	6. Applying a DING in teaching about insolation of the Earth and use of solar energy
	7. Conclusion
	Acknowledgments
	References



