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Th1     AN ILL FATED SATELLITE 

SOLUTION 
 

1.1 and 1.2 
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2.1  

 The value of the semi-latus-rectum l is obtained taking into account that the orbital angular momentum is the same 
in both orbits. That is 
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 The eccentricity value is 
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where E is the new satellite mechanical energy 
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that is  
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Combining both, one gets    βε =  

 This is an elliptical trajectory because 1<= βε . 
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2.2 

 The initial and final orbits cross at P, where the satellite engine fired instantaneously (see Figure 4). At this point 
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 From the trajectory expression one immediately obtains that 
the maximum and minimum values of r correspond to 0=θ  and  

πθ =  respectively (see Figure 4).  Hence, they are given by 
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 For 4/1=β , one gets 

  m10383m;10635 77 ⋅=⋅= .r.r minmax  

The distances maxr  and minr  can also be obtained from mechanical energy and angular momentum conservation, 

taking into account that r
r

 and v
r

 are orthogonal at apogee and at perigee  
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What remains of them, after eliminating v, is a second-degree equation whose solutions are maxr  and minr . 

2.4 

 By the Third Kepler Law, the period T in the new orbit satisfies that 
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where a, the semi-major axis of the ellipse, is given by 
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3.1 

 Only if the satellite follows an open trajectory it can escape from the Earth gravity attraction. Then, the orbit 
eccentricity has to be equal or larger than one. The minimum boost corresponds to a parabolic trajectory, with ε = 1 

  βε =  ⇒  1=escβ  

 This can also be obtained by using that the total satellite energy has to be zero to reach infinity (Ep = 0) without 
residual velocity (Ek = 0) 
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 This also arises from ∞=T  or from ∞=maxr . 

3.2 

 Due to 1== escβε , the polar parabola equation is  
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where the semi-latus-rectum continues to be 0rl = . The minimum Earth - satellite distance corresponds to πθ = , where  
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 This also arises from energy conservation (for E = 0) and from the equality between the angular momenta (L0) at the 
initial point P and at maximum approximation, where  r

r
 and v

r
 are orthogonal. 

4.1 

 If the satellite escapes to infinity with residual velocity ∞v , by energy conservation 
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4.2 

 As 1=>= escββε  the satellite trajectory will be a hyperbola. 

 The satellite angular momentum is the same at P than at the point 
where its residual velocity is ∞v  (Figure 5), thus 
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4.3  

 The angle between each asymptote and the hyperbola axis is that appearing in its polar equation in the limit ∞→r . 

This is the angle for which the equation denominator vanishes  
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Hint on the conical curves 

 
2
πα =  1.0 

 

2.3 
Results of 2.1,  or 
conservation of E and L 
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2.4 Third Kepler's Law ( ) 2/32
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3.1 ε = 1,  E = 0,  T = ∞  or 
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3.2 ε = 1 and results of 2.1 
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