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Th 1     AN ILL FATED SATELLITE 
 
 

The most frequent orbital manoeuvres performed by spacecraft 
consist of velocity variations along the direction of flight, namely 
accelerations to reach higher orbits or brakings done to initiate re-entering in 
the atmosphere. In this problem we will study the orbital variations when the 
engine thrust is applied in a radial direction.  

To obtain numerical values use: Earth radius m10376 6⋅= .RT , 
Earth surface gravity 2m/s819.g = , and take the length of the sidereal day 
to be h0240 .T = . 

We consider a geosynchronous1 communications satellite of mass m 
placed in an equatorial circular orbit of radius 0r . These satellites have an 
“apogee engine” which provides the tangential thrusts needed to reach the 
final orbit. 

Marks are indicated at the beginning of each subquestion, in parenthesis. 

 

Question 1 

1.1 (0.3) Compute the numerical value of 0r . 

1.2 (0.3+0.1) Give the analytical expression of the velocity 0v  of the satellite as a function of g, TR , and 0r , and 
calculate its numerical value. 

1.3 (0.4+0.4) Obtain the expressions of its angular momentum 0L  and mechanical energy 0E , as functions of 0v , m, g 
and TR . 

Once this geosynchronous circular orbit has been reached (see Figure F-1), the satellite 
has been stabilised in the desired location, and is being readied to do its work, an error by the 
ground controllers causes the apogee engine to be fired again. The thrust happens to be 
directed towards the Earth and, despite the quick reaction of the ground crew to shut the 
engine off, an unwanted velocity variation v∆  is imparted on the satellite. We characterize 
this boost by the parameter 0v/v∆β = . The duration of the engine burn is always negligible 
with respect to any other orbital times, so that it can be considered as instantaneous.  

 
Question 2 

Suppose 1<β . 

2.1 (0.4+0.5) Determine the parameters of the new orbit2, semi-latus-rectum l  and eccentricity ε , in terms of 0r  and β.  

2.2 (1.0) Calculate the angle α between the major axis of the new orbit and the position vector at the accidental misfire. 

2.3 (1.0+0.2) Give the analytical expressions of the perigee minr  and apogee maxr  distances to the Earth centre, as 
functions of 0r  and β , and calculate their numerical values for 4/1=β . 

2.4 (0.5+0.2) Determine the period of the new orbit, T, as a function of 0T  and β, and calculate its numerical value for 
4/1=β . 

                                                           
1 Its revolution period is 0T . 
2 See the “hint”. 

Image: ESA 
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Question 3 

3.1 (0.5) Calculate the minimum boost parameter, escβ , needed for the satellite to escape Earth gravity. 

3.2 (1.0) Determine in this case the closest approach of the satellite to the Earth centre in the new trajectory, minr ′ , as a 
function of 0r . 

 

Question 4 

Suppose escββ > . 

4.1 (1.0) Determine the residual velocity at the infinity, ∞v , as a function of 0v  
and β. 

4.2 (1.0) Obtain the “impact parameter” b of the asymptotic escape direction in 
terms of 0r and β. (See Figure F-2). 

4.3 (1.0+0.2) Determine the angle φ  of the asymptotic escape direction in terms of 

β. Calculate its numerical value for escββ
2
3

=  . 

 

 

 

 

HINT 

 

Under the action of central forces obeying the inverse-square law, bodies follow 

trajectories described by ellipses, parabolas or hyperbolas. In the approximation m << M 

the gravitating mass M is at one of the focuses. Taking the origin at this focus, the general 

polar equation of these curves can be written as (see Figure F-3) 
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where l is a positive constant named the semi-latus-rectum and ε  is the eccentricity of the 

curve. In terms of constants of motion: 
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where G is the Newton constant, L is the modulus of the angular momentum of the orbiting mass, with respect to the origin, and E is its  

mechanical energy, with zero potential energy at infinity. 

 
We may have the following cases: 

 
i) If 10 <≤ ε , the  curve is an ellipse (circumference for 0=ε ).  

ii) If 1=ε , the curve is a parabola. 

iii) If 1>ε , the curve is a hyperbola.  
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Th 1     ANSWER SHEET 
 
 

 

Question Basic formulas and 
ideas used 

Analytical results Numerical results Marking 
guideline 
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2.4  =T  =T  0.7 

3.1   =escβ  0.5 

3.2  =′minr   1.0 

4.1  =∞v   1.0 

4.2  =b   1.0 

4.3  =φ  =φ  1.2 

 
 


