

Th 2 ABSOLUTE MEASUREMENTS OF ELECTRICAL QUANTITIES **SOLUTION**

1. After some time t, the normal to the coil plane makes an angle ωt with the magnetic field $\vec{B}_0 = B_0 \vec{i}$. Then, the magnetic flux through the coil is

$$\phi = N \ \vec{B}_0 \cdot \vec{S}$$

where the vector surface \vec{S} is given by $\vec{S} = \pi a^2 \left(\cos \omega t \vec{i} + \sin \omega t \vec{j} \right)$

 $\phi = N\pi a^2 B_0 \cos \omega t$ Therefore

The induced electromotive force is

$$\mathcal{E} = -\frac{d\phi}{dt} \qquad \Rightarrow \qquad \mathcal{E} = N\pi a^2 B_0 \omega \sin \omega t$$

The instantaneous power is $P = \varepsilon^2 / R$, therefore

$$\left\langle P \right\rangle = \frac{\left(N \ \pi \ a^2 B_0 \omega \right)^2}{2R}$$

where we used $\langle \sin^2 \omega t \rangle = \frac{1}{T} \int_0^T \sin^2 \omega t \, dt = \frac{1}{2}$

2. The total field at the center the coil at the instant *t* is

....

$$\vec{B}_t = \vec{B}_0 + \vec{B}_i$$

where \vec{B}_i is the magnetic field due to the induced current $\vec{B}_i = B_i \left(\cos \omega t \,\vec{i} + \sin \omega t \,\vec{j}\right)$

with

$$B_i = \frac{\mu_0 N I}{2a}$$
 and $I = \mathcal{E} / R$

Therefore

 $B_i = \frac{\mu_0 N^2 \pi a B_0 \omega}{2R} \sin \omega t$

The mean values of its components are

$$\langle B_{ix} \rangle = \frac{\mu_0 N^2 \pi a B_0 \omega}{2R} \langle \sin \omega t \cos \omega t \rangle = 0$$

$$\langle B_{iy} \rangle = \frac{\mu_0 N^2 \pi a B_0 \omega}{2R} \langle \sin^2 \omega t \rangle = \frac{\mu_0 N^2 \pi a B_0 \omega}{4R}$$

And the mean value of the total magnetic field is

$$\left\langle \vec{B}_t \right\rangle = B_0 \, \vec{i} + \frac{\mu_0 N^2 \pi a B_0 \, \omega}{4 R} \, \vec{j}$$

The needle orients along the mean field, therefore

$$\tan\theta = \frac{\mu_0 N^2 \pi a\omega}{4R}$$

Finally, the resistance of the coil measured by this procedure, in terms of θ , is

$$R = \frac{\mu_0 N^2 \pi a \omega}{4 \tan \theta}$$

3. The force on a unit positive charge in a disk is radial and its modulus is

$$\left|\vec{v}\times\vec{B}\right|=vB=\omega rB$$

where B is the magnetic field at the center of the coil

$$B = N \frac{\mu_0 I}{2a}$$

Then, the electromotive force (e.m.f.) induced on each disk by the magnetic field B is

$$\mathcal{E}_D = \mathcal{E}_{D'} = B\omega \int_0^b r \, dr = \frac{1}{2} B\omega b^2$$

Finally, the induced e.m.f. between 1 and 4 is $\mathcal{E} = \mathcal{E}_D + \mathcal{E}_{D'}$

$$\mathcal{E} = N \frac{\mu_0 b^2 \omega I}{2a}$$

4. When the reading of G vanishes, $I_G = 0$ and Kirchoff laws give an immediate answer. Then we have

$$\mathcal{E} = I R \qquad \Rightarrow \qquad R = N \frac{\mu_0 b^2 \omega}{2a}$$

5. The force per unit length f between two indefinite parallel straight wires separated by a distance h is.

$$f = \frac{\mu_0}{2\pi} \frac{I_1 I_2}{h}$$

for $I_1 = I_2 = I$ and length $2\pi a$, the force F induced on C₂ by the neighbor coils C₁ is

$$F = \frac{\mu_0 a}{h} I^2$$

6. In equilibrium

$$mgx = 4Fd$$

Then

$$mgx = \frac{4\mu_0 ad}{h}I^2 \tag{1}$$

so that

$$I = \left(\frac{mghx}{4\mu_0 ad}\right)^{1/2}$$

7. The balance comes back towards the equilibrium position for a little angular deviation $\delta \varphi$ if the gravity torques with respect to the fulcrum O are greater than the magnetic torques.

$$Mgl\sin\delta\varphi + mgx\cos\delta\varphi > 2\mu_0 aI^2 \left(\frac{1}{h-\delta z} + \frac{1}{h+\delta z}\right) d\cos\delta\varphi$$

Therefore, using the suggested approximation

$$Mgl\sin\delta\varphi + mgx\cos\delta\varphi > \frac{4\mu_0 adI^2}{h} \left(1 + \frac{\delta z^2}{h^2}\right)\cos\delta\varphi$$

Taking into account the equilibrium condition (1), one obtains

$$M g l \sin \delta \varphi > m g x \frac{\delta z^2}{h^2} \cos \delta \varphi$$

Finally, for $\tan \delta \varphi \approx \sin \delta \varphi = \frac{\delta z}{d}$

$$\delta z < \frac{M l h^2}{m x d} \implies \delta z_{\max} = \frac{M l h^2}{m x d}$$

Question	Basic formulas and ideas used	Analytical results	Marking guideline
1	$\Phi = N \vec{B}_0 \cdot \vec{S}$ $\mathcal{E} = -\frac{d\Phi}{dt}$ $P = \frac{\mathcal{E}^2}{R}$	$\mathcal{E} = N\pi a^2 B_0 \omega \sin \omega t$ $\langle P \rangle = \frac{\left(N\pi a^2 B_0 \omega\right)^2}{2R}$	0.5 1.0
2	$\vec{B} = \vec{B}_0 + \vec{B}_i$ $B_i = \frac{\mu_0 N}{2a} I$ $\tan \theta = \frac{\langle B_y \rangle}{\langle B_x \rangle}$	$R = \frac{\mu_0 N^2 \pi a\omega}{4\tan\theta}$	2.0
3	$\vec{E} = \vec{v} \times \vec{B}$ $v = \omega r$ $B = N \frac{\mu_0 I}{2a}$ $\mathcal{E} = \int_0^b \vec{E} d\vec{r}$	$\mathcal{E} = N \frac{\mu_0 b^2 \omega I}{2a}$	2.0
4	$\mathcal{E} = RI$	$R = N \frac{\mu_0 b^2 \omega}{2a}$	0,5
5	$f = \frac{\mu_0}{2\pi} \frac{II'}{h}$	$F = \frac{\mu_0 a}{h} I^2$	1.0
6	mg x = 4F d	$I = \left(\frac{mghx}{4\mu_0 ad}\right)^{1/2}$	1.0
7	$\Gamma_{grav} > \Gamma_{mag}$	$\delta z_{\max} = \frac{M l h^2}{m x d}$	2.0

Th 2 ANSWER SHEET

