Th 2 ABSOLUTE MEASUREMENTS OF ELECTRICAL QUANTITIES

SOLUTION

1. After some time t, the normal to the coil plane makes an angle ωt with the magnetic field $\vec{B}_{0}=B_{0} \vec{i}$. Then, the magnetic flux through the coil is

$$
\phi=N \vec{B}_{0} \cdot \vec{S}
$$

where the vector surface \vec{S} is given by $\vec{S}=\pi a^{2}(\cos \omega t \vec{i}+\sin \omega t \vec{j})$
Therefore $\quad \phi=N \pi a^{2} B_{0} \cos \omega t$
The induced electromotive force is

$$
\varepsilon=-\frac{d \phi}{d t} \quad \Rightarrow \quad \varepsilon=N \pi a^{2} B_{0} \omega \sin \omega t
$$

The instantaneous power is $P=\varepsilon^{2} / \mathrm{R}$, therefore

$$
\langle P\rangle=\frac{\left(N \pi a^{2} B_{0} \omega\right)^{2}}{2 R}
$$

where we used $<\sin ^{2} \omega t>=\frac{1}{T} \int_{0}^{T} \sin ^{2} \omega t d t=\frac{1}{2}$
2. The total field at the center the coil at the instant t is

$$
\vec{B}_{t}=\vec{B}_{0}+\vec{B}_{i}
$$

where \vec{B}_{i} is the magnetic field due to the induced current $\vec{B}_{i}=B_{i}(\cos \omega t \vec{i}+\sin \omega t \vec{j})$
with

$$
B_{i}=\frac{\mu_{0} N I}{2 a} \quad \text { and } \quad I=\varepsilon / R
$$

Therefore

$$
B_{i}=\frac{\mu_{0} N^{2} \pi a B_{0} \omega}{2 R} \sin \omega t
$$

The mean values of its components are

$$
\begin{aligned}
& \left\langle B_{i x}\right\rangle=\frac{\mu_{0} N^{2} \pi a B_{0} \omega}{2 R}\langle\sin \omega t \cos \omega t\rangle=0 \\
& \left\langle B_{i y}\right\rangle=\frac{\mu_{0} N^{2} \pi a B_{0} \omega}{2 R}\left\langle\sin ^{2} \omega t\right\rangle=\frac{\mu_{0} N^{2} \pi a B_{0} \omega}{4 R}
\end{aligned}
$$

And the mean value of the total magnetic field is

$$
\left\langle\vec{B}_{t}\right\rangle=B_{0} \vec{i}+\frac{\mu_{0} N^{2} \pi a B_{0} \omega}{4 R} \vec{j}
$$

The needle orients along the mean field, therefore

$$
\tan \theta=\frac{\mu_{0} N^{2} \pi a \omega}{4 R}
$$

Finally, the resistance of the coil measured by this procedure, in terms of θ, is

$$
R=\frac{\mu_{0} N^{2} \pi a \omega}{4 \tan \theta}
$$

3. The force on a unit positive charge in a disk is radial and its modulus is

$$
|\vec{v} \times \vec{B}|=v B=\omega r B
$$

where B is the magnetic field at the center of the coil

$$
B=N \frac{\mu_{0} I}{2 a}
$$

Then, the electromotive force (e.m.f.) induced on each disk by the magnetic field B is

$$
\varepsilon_{D}=\varepsilon_{D^{\prime}}=B \omega \int_{0}^{b} r d r=\frac{1}{2} B \omega b^{2}
$$

Finally, the induced e.m.f. between 1 and 4 is $\varepsilon=\varepsilon_{D}+\varepsilon_{D^{\prime}}$

$$
\varepsilon=N \frac{\mu_{0} b^{2} \omega I}{2 a}
$$

4. When the reading of G vanishes, $I_{G}=0$ and Kirchoff laws give an immediate answer. Then we have

$$
\varepsilon=I R \quad \Rightarrow \quad R=N \frac{\mu_{0} b^{2} \omega}{2 a}
$$

5. The force per unit length f between two indefinite parallel straight wires separated by a distance h is.

$$
f=\frac{\mu_{0}}{2 \pi} \frac{I_{1} I_{2}}{h}
$$

for $I_{1}=I_{2}=I$ and length $2 \pi a$, the force F induced on C_{2} by the neighbor coils C_{1} is

$$
F=\frac{\mu_{0} a}{h} I^{2}
$$

6. In equilibrium

$$
m g x=4 F d
$$

Then

$$
\begin{equation*}
m g x=\frac{4 \mu_{0} a d}{h} I^{2} \tag{1}
\end{equation*}
$$

so that

$$
I=\left(\frac{m g h x}{4 \mu_{0} a d}\right)^{1 / 2}
$$

7. The balance comes back towards the equilibrium position for a little angular deviation $\delta \varphi$ if the gravity torques with respect to the fulcrum O are greater than the magnetic torques.

$$
M g l \sin \delta \varphi+m g x \cos \delta \varphi>2 \mu_{0} a I^{2}\left(\frac{1}{h-\delta z}+\frac{1}{h+\delta z}\right) d \cos \delta \varphi
$$

Therefore, using the suggested approximation

$$
M g l \sin \delta \varphi+m g x \cos \delta \varphi>\frac{4 \mu_{0} a d I^{2}}{h}\left(1+\frac{\delta z^{2}}{h^{2}}\right) \cos \delta \varphi
$$

Taking into account the equilibrium condition (1), one obtains

$$
M g l \sin \delta \varphi>m g x \frac{\delta z^{2}}{h^{2}} \cos \delta \varphi
$$

Finally, for $\tan \delta \varphi \approx \sin \delta \varphi=\frac{\delta z}{d}$

$$
\delta z<\frac{M l h^{2}}{m x d} \quad \Rightarrow \quad \delta z_{\max }=\frac{M l h^{2}}{m x d}
$$

Th 2 ANSWER SHEET

Question	Basic formulas and ideas used	Analytical results	Marking guideline
1	$\begin{aligned} & \Phi=N \vec{B}_{0} \cdot \vec{S} \\ & \varepsilon=-\frac{d \Phi}{d t} \\ & P=\frac{\varepsilon^{2}}{R} \end{aligned}$	$\begin{aligned} & \varepsilon=N \pi a^{2} B_{0} \omega \sin \omega t \\ & \langle P\rangle=\frac{\left(N \pi a^{2} B_{0} \omega\right)^{2}}{2 R} \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$
2	$\begin{aligned} & \vec{B}=\vec{B}_{0}+\vec{B}_{i} \\ & B_{i}=\frac{\mu_{0} N}{2 a} I \\ & \tan \theta=\frac{\left\langle B_{y}\right\rangle}{\left\langle B_{x}\right\rangle} \end{aligned}$	$R=\frac{\mu_{0} N^{2} \pi a \omega}{4 \tan \theta}$	2.0
3	$\begin{aligned} \vec{E} & =\vec{v} \times \vec{B} \\ v & =\omega r \\ B & =N \frac{\mu_{0} I}{2 a} \\ \varepsilon & =\int_{0}^{b} \vec{E} d \vec{r} \end{aligned}$	$\varepsilon=N \frac{\mu_{0} b^{2} \omega I}{2 a}$	2.0
4	$\varepsilon=R I$	$R=N \frac{\mu_{0} b^{2} \omega}{2 a}$	0,5
5	$f=\frac{\mu_{0}}{2 \pi} \frac{I I^{\prime}}{h}$	$F=\frac{\mu_{0} a}{h} I^{2}$	1.0
6	$m g x=4 F d$	$I=\left(\frac{m g h x}{4 \mu_{0} a d}\right)^{1 / 2}$	1.0
7	$\Gamma_{\text {grav }}>\Gamma_{\text {mag }}$	$\delta z_{\max }=\frac{M l h^{2}}{m x d}$	2.0

