Answer Form

Experimental Problem No. 2

Birefringence of mica

Task 2.1 a) Experimental setup for I_{P} . (0.5 points)

Task 2.1 b) Experimental setup for I_o . (0.5 points)

Experimental setup for measurement of mica birefringence

Task 2.2 The scale for angles.

2.2	The angle between two consecutive black lines is	0.25
	$\theta_{int} = 3.6$ degrees because there are 100 lines.	

Tasks 2.3 Measuring I_P and I_O . Use additional sheets if necessary.

TABLE I(3 points)					
$\overline{\theta}$ (degrees)	$(I_p \pm 1) \times 10^{-3}$ V	$(I_o \pm 1) \times 10^{-3}$ V			
-3.6	46.4	1.1			
0	48.1	0.2			
3.6	47.0	0.6			
7.2	46.0	2.0			
10.8	42.3	4.9			
14.4	38.2	9.0			
18.0	33.9	12.5			

21.6	27.7	17.9
25.2	23.4	22.0
28.8	17.8	27.0
32.4	12.5	31.7
36.0	8.8	34.8
39.6	5.2	38.0
43.2	3.6	39.4
46.8	3.2	39.6
50.4	4.5	38.7
54.0	6.9	36.6
57.6	10.3	33.6
61.2	14.7	29.4
64.8	20.1	24.7
68.4	25.4	19.7
72.0	30.5	14.7
75.6	36.6	10.2
79.2	40.7	6.1
82.8	44.3	3.2
86.4	46.9	1.0
90.0	47.8	0.2
93.6	47.0	0.4
97.2	45.7	2.0

Parallel I_P and perpendicular I_O intensities vs angle $\overline{\theta}$.

GRAPH NOT REQUIRED!

Task 2.4 Finding an appropriate zero for θ .

a) Graphical analysis 2.4 1.0 The value for the shift is $\delta \overline{\theta} = -1.0$ degrees. Add the graph paper with the analysis of this Task. b) Numerical analysis From Table I choose the first three points of $\overline{\theta}$ and $I_o(\overline{\theta})$: (intensities in millivolts) $(x_1, y_1) = (-3.6, 1.1)$ $(x_2, y_2) = (0, 0.2)$ $(x_3, y_3) = (3.6, 0.6)$ We want to fit $y = ax^2 + bx + c$. This gives three equations: $1.1 = a(3.6)^2 - b(3.6) + c$ 0.2 = c $0.6 = a(3.6)^2 + b(3.6) + c$ second in first $\Rightarrow b = \frac{-0.9 + a(3.6)^2}{3.6}$ in third $\Rightarrow 0.6 = a((3.6)^2 + (3.6)^2) - 0.9 + 0.2$ b = -0.069 $\Rightarrow a = 0.050$ The minimum of the parabola is at: $\overline{\theta}_{\min} = -\frac{b}{2a} \approx 0.7$ degrees Therefore, $\delta \overline{\theta} = -0.7$ degrees.

Task 2.5 Choosing the appropriate variables.

Task 2.6 Statistical analysis and the phase difference.

2.6 To perform the statistical analysis, we shall then use $y = \overline{I}_{o}(\theta)$ and $x = \sin^{2}(2\theta)$. Since for $\theta: 0 \to \frac{\pi}{4}$, $x: 0 \to 1$, we use only 12 pairs of data points to cover this range, as given in Table II. x may be left without uncertainty since it is a setting. The uncertainty in ymay be calculated as $\Delta \bar{I}_o = \sqrt{\left(\frac{\partial \bar{I}_o}{\partial I_o}\right)^2 \Delta I_o^2 + \left(\frac{\partial \bar{I}_p}{\partial I_p}\right)^2 \Delta I_p^2}$ and one gets $\Delta \bar{I}_o = \frac{\sqrt{I_o^2 + I_p^2}}{(I_o + I_p)^2} \Delta I_o \approx 0.018$, approximately the same for all values.

$\overline{\theta}$ (degrees)	$x = \sin^2(2\theta)$	$y = \overline{I}_o \pm 0.018$		
2.9	0.010	0.013		
6.5	0.051	0.042		
10.1	0.119	0.104		
13.7	0.212	0.191		
17.3	0.322	0.269		
20.9	0.444	0.392		
24.5	0.569	0.484		
28.1	0.690	0.603		
31.7	0.799	0.717		
35.3	0.890	0.798		
38.9	0.955	0.880		
42.5	0.992	0.916		

|--|

We now perform a least square analysis for the variables y vs x in Table	1.75
II. The slope and y-intercept are:	
$m \pm \Delta m = 0.913 \pm 0.012$	
$b \pm \Delta b = -0.010 \pm 0.008$	
The formulas for this analysis are:	
	We now perform a least square analysis for the variables y vs x in Table II. The slope and y-intercept are: $m \pm \Delta m = 0.913 \pm 0.012$ $b \pm \Delta b = -0.010 \pm 0.008$ The formulas for this analysis are:

$$m = \frac{N \sum_{n=1}^{N} x_n y_n - \sum_{n=1}^{N} x_n \sum_{n'=1}^{N} y_{n'}}{\Delta}$$
$$b = \frac{\sum_{n=1}^{N} x_n^2 \sum_{n'=1}^{N} y_{n'} - \sum_{n'=1}^{N} x_n \sum_{n'=1}^{N} x_{n'} y_{n'}}{\Delta}$$

where

$$\Delta = N \sum_{n=1}^{N} x_n^2 - \left(\sum_{n=1}^{N} x_n \right)^2$$

with N the number of data points. The uncertainty is calculated as

$$(\Delta m)^2 = N \frac{\sigma^2}{\Delta}$$
, $(\Delta b)^2 = \frac{\sigma^2}{\Delta} \sum_{n=1}^N x_n^2$ with,
 $\sigma^2 = \frac{1}{N-2} \sum_{n=1}^N (y_n - b - mx_n)^2$

with N = 12 in this example.

Include the accompanying plot or plots.

$$\Delta m = \left| \frac{\partial m}{\partial \Delta \phi} \right| \Delta (\Delta \phi) = \frac{1}{2} \sin(\Delta \phi) \Delta (\Delta \phi), \text{ therefore, } \Delta (\Delta \phi) = \frac{2\Delta m}{\sin(\Delta \phi)}.$$

Task 2.7 Calculating the birefringence $|n_1 - n_2|$.

2.7 Write down the width of the slab of mica you used,

$$L \pm \Delta L = (100 \pm 1) \times 10^{-6} \text{ m}$$

Write down the wavelength you use,
 $\lambda \pm \Delta \lambda = (663 \pm 25) \times 10^{-9} \text{ m} \text{ (from Problem 1)}$
Calculate the birefringence
 $|n_1 - n_2| \pm \Delta |n_1 - n_2| = (3.94 \pm 0.16) \times 10^{-3}$
The birefringence is between 0.003 and 0.005. Nominal value 0.004
Write down the formulas you used for the calculation of the uncertainty of
the birefringence.
Since the width $L > 82$ micrometers, we use
 $2\pi - \Delta \phi = \frac{2\pi L}{\lambda} |n_1 - n_2|$
The error is
 $\Delta |n_1 - n_2| = \sqrt{\left(\frac{\partial |n_1 - n_2|}{\lambda}\right)^2} \Delta \lambda^2 + \left(\frac{\partial |n_1 - n_2|}{\lambda}\right)^2 \Delta L^2 + \left(\frac{\partial |n_1 - n_2|}{\partial \Delta \phi}\right)^2 \Delta (\Delta \phi)^2}$
 $\Delta |n_1 - n_2| = \sqrt{\left(\frac{|n_1 - n_2|}{\lambda}\right)^2} \Delta \lambda^2 + \left(\frac{|n_1 - n_2|}{L}\right)^2 \Delta L^2 + \left(\frac{\lambda}{2\pi L}\right)^2 \Delta (\Delta \phi)^2}$

Since the data may appear somewhat disperse and/or the errors in the intensities may be large, a graphical analysis may be performed.

In the accompanying plot, it is exemplified a simple graphical analysis: first the main slope is found, then, using the largest deviations one can find two extreme slopes.

The final result is,

 $m = 0.91 \pm 0.08$ and $b = -0.01 \pm 0.04$

The calculation of the birefringence and its uncertainty follows as before. One now finds,

 $|n_1 - n_2| \pm \Delta |n_1 - n_2| = (3.94 \pm 0.45) \times 10^{-3}.$

A larger (more realistic) error.

Comparison of experimental data (normalized intensities \bar{I}_p and \bar{I}_o) with fitting (equations (2.3) and (2.4)) using the calculated value of the phase difference $\Delta \phi$.

GRAPH NOT REQUIRED!