Problem 2: Mechanical Blackbox

I. Determination of CM ($\mathbf{1 . 0}$ points) *marks are either full or zero

Physical concepts/Understanding (0.4 points)

Points	Concepts/Details
$\mathbf{0 . 4}$	P1* Method for CM measurement (schematic drawing) is scientifically reasonable: e.g. hanging the cylinder with a thread loop, hanging with strings at ends, placing at edge of table or moving balance points together until they meet.
Experimental skills and Analysis (0.2 points)	
$\mathbf{0 . 2}$	E1* >=3 measurements
Accuracy and uncertainties $(\mathbf{0 . 4}$ points) (penalty for unsuitable sig. figs. (-0.1) and missing units (-0.1))	
$\mathbf{0 . 2}$	A1* Position of centre of mass $17.6-18.0 \mathrm{~cm}$ (from light end), $12.0-12.4 \mathrm{~cm}$ (from heavy end)
$\mathbf{0 . 2}$	A2 Error estimate $\leq 0.3 \mathrm{~cm}$ from statistical error (0.2), $0.1-0.2 \mathrm{~cm}$ from single measurement error (0.1)

II: Determination of other parameters (9.0 points) *marks are either full or zero

Points	Concepts/Details
Physical concepts/Understanding (2.2 points)	
0.4	P2* Obtain expression for the period/frequency: e.g. using formula for simple harmonic motion, solving differential equation etc.
1.0	P3* Form a straight line equation that leads to a graph (e.g. $T^{2} R$ vs. R^{2} or T^{2} / R vs. $1 / R^{2}$) to extract relevant parameters.
0.4	$\text { P4* } I_{C M}=\frac{1}{3} M\left(\frac{L}{2}\right)^{2}+M\left(x_{C M}-\frac{L}{2}\right)^{2}+m\left(z-x_{C M}\right)^{2}$
0.4	$\text { P5* } x_{C M}=\frac{m z+M \frac{L}{2}}{m+M}$
Experimental skills and Data analysis (3.7 points)	
0.6	E2 Table: measurements $T(0.2), R(0.2)$ and units (0.2)
1.0	E3 Graph: appropriate scale to cover good area of the graph paper (area enclosing data points plotted covers at least half of graph paper area) (0.3)*, correct plotting of data (all correct (0.4)/some incorrect (0.2)/all wrong (0)) and units (0.3)

MODIFIED Q2_EXPERIMENT_MARKING_14JULY.DOCX Ph(42 Experimental Competition: Marking Scheme	
Points	Concepts/Details
1.3	E4 Quality of data: For each measurement: >=10 oscillations (0.5), >=7 oscillations (0.3), others (0) - Number of measurement at each pivoting position: $>=3$ meas. (0.3), 2 meas. (0.1), 1 meas. (0 pt) - Number of pivoting positions: $>=10$ pos. (0.5), $>=8$ pos. (0.4) , >=5 pos. (0.3), < 5 (0).
0.4	E5 Form two equations between z and M / m. (0.2 each)
0.4	E6 Use these equations to find $\mathrm{z}(0.2)$ and $M / m(0.2)$.
Accuracy and uncertainties (3.1 points) (penalty for unsuitable sig. figs. (-0.1) and missing units (-0.1))	
0.6	A3 Obtain a correct value of g from the slope of the graph. The value of $g \quad 968-988(0.6) \quad 958-967$ or $989-998(0.3) \mathrm{cm} / \mathrm{s}^{2}$
0.3	A4 Equation for finding error of $g(0.2)$, acceptable method of finding the precursor error(s) (0.1).
0.6	A5 Obtain a correct value of z The value of $z \quad 25.9-26.2(0.6) \quad 25.5-25.8$ or $26.3-26.6(0.3) \mathrm{cm}$
0.6	A6 Obtain a correct value of M / m The value of $M / m \quad 2.6-2.8(0.6) \quad 2.5-2.59$ or $2.81-2.9(0.3)$
0.6	A7 Equation for finding error of $z(0.2)$, acceptable method of finding the precursor error(s) (0.1). Equation for finding error of $(M / m)(0.2)$, acceptable method of finding the precursor error(s) (0.1).
0.4	A8* $\Delta z \leq 0.4 \mathrm{~cm}$ or $\Delta(M / m) \leq 0.15$

