Theoretical Question 3: To Commemorate the Centenary of Rutherford's Atomic Nucleus: The scattering of an ion by a neutral atom

Questions	Points	Concepts/Details
3.1 (Total 1.2)	0.3	3.1a Use Coulomb's law - Write down inverse square law (0.2 pt) - Correct constant (0.1 pt)
	0.3	3.1b Take electric field from 2 charges - Write down superposition of electric field (0.2 pt) - Correct charge polarity/direction (0.1 pt)
	0.3	3.1c Correct distances - If the student didn't use the figure provided (-0.1 pt)
	0.3	3.1d Answer: $E_{p}=+\frac{4 q a}{4 \pi \varepsilon_{0} r^{3}}$ or $+\frac{q a}{\pi \varepsilon_{0} r^{3}}$ or $\frac{2 p}{4 \pi \varepsilon_{0} r^{3}}$
$\begin{aligned} & 3.2 \\ & \text { (Total 3.0) } \end{aligned}$	0.3	3.2a Write down that the force is the product of electric field and charge. $\left\{\vec{f}=Q \vec{E}_{p}\right\}$
	0.4	3.2b Answer: $\vec{f}=+\frac{4 q a}{4 \pi \varepsilon_{0} r^{3}} Q \hat{r}$ or $+\frac{q a}{\pi \varepsilon_{0} r^{3}} Q \hat{r}$ or $\frac{2 p}{4 \pi \varepsilon_{0} r^{3}} Q \hat{r}$
	0.5	3.2c Use the electric field seen by the atom from the ion
	0.4	3.2d Use Coulomb's law to write down $\vec{E}_{\text {ion }}=-\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \hat{r}($ magnitude $0.1 \mathrm{pt}, \operatorname{sign} 0.3 \mathrm{pt})$
	0.2	3.2e Use the given expression for polarisability and write down $\vec{p}=\alpha \vec{E}_{i o n}=-\frac{\alpha Q}{4 \pi \varepsilon_{0} r^{2}} \hat{r}$
	0.5	3.2f Use the concept of induced dipole by substituting $\vec{p}=-\frac{\alpha Q}{4 \pi \varepsilon_{0} r^{2}} \hat{r}$ in equation (2) of question (3.1) $\left\{\vec{E}_{p}=\frac{1}{4 \pi \varepsilon_{0} r^{3}}\left[-\frac{2 \alpha Q}{4 \pi \varepsilon_{0} r^{2}} \hat{r}\right]\right\} \ldots \ldots .(0.3 \mathrm{pt})$ Get $\vec{E}_{p}=-\frac{\alpha Q}{8 \pi^{2} \varepsilon_{0}^{2} r^{5}} \hat{r} \quad($ magnitude $0.1 \mathrm{pt}, \operatorname{sign} 0.1 \mathrm{pt})$
	0.3	3.2g Answer: $\vec{f}=-\frac{2 \alpha Q^{2}}{\left(4 \pi \varepsilon_{0}\right)^{2} r^{r}} \hat{r}=-\frac{\alpha Q^{2}}{8 \pi^{2} \varepsilon_{0}^{2} r^{5} \hat{r}}$
	0.2	3.2h Point out that the negative sign implies attractive force.

	$\mathbf{0 . 2}$	3.2i Point out Q^{2} implies that it is regardless of the sign of the ion. 3.3 (Total 0.9)

