IJSO 2021 BIOLOGY THEORY 10 points Solutions & Marking Scheme

General Instruction :

1. Only the answers marked or written in the answer sheet will be evaluated.

2. Instruction to mark a column with a cross (X) as an answer is to be marked as follows:

1. Theory I – Date palm (6.75 points)

1.1 (0.5 points)

Labol	Tissues					
Lavel	1	2	3	4	5	6
А			\searrow			
В				\succ		
C		\succ				
D	\succ					
Е						\ge

0.1 point for each correct label

1.2 (0.25 point).

Tissue	Yes	No
1	\succ	
2	\succ	
3	\succ	
4	\triangleright	
5		\succ
6		\succ

0.25 point for all correct answer (no partial marking) You loose 0.25 points if a wrong box is ticked

Ans: 1, 2, 3, 4 [since they are derived from ovary (2, 3, 4) and ovule (1), with no participation of the male parent]

1.3 (1.0 points)

Statement	Yes	No
1	\succ	
2		\ge
3	\succ	

1 point for all correct answers0.5 point for 2 correct answers0 point for 1 correct answer

Statement 1 - At stage 2 there is breakdown of starch and thus enzyme B is active. Statement 2 - There is only basal level of sugar in stage 1, which is contributed entirely by sucrose, thus enzyme A is not active.

Statement 3- As there is basal level of sugar in stage 1, and higher levels at stage 2 and 3 with depleting levels of sucrose and starch, thus both enzymes are active.

1.4.1 (0.5 point)

Space for calculation

The sucrose stock is of 400 mM i.e. 400 millimoles in 1000 ml or 400,000 μ moles in 1000 ml or 400 μ moles in 1ml As the volume of substrate added to reaction mixture is 0.2 ml, the amount of sucrose in the reaction mixture is 80 μ moles

Answer

Amount of sucrose = **80** µmoles

No partial marking.

1.4.2 (0.25 point) Concentration (mg/ml) of Glucose = 0.1

0.1 OD corresponds to 0.1 mg/ml of glucose.

No partial mark

1.4.3 (0.75 point)

Space for calculation

Mass of glucose is 180.

180 g in 1 liter corresponds to 1M solution. 180 mg in 1 ml corresponds to 1M solution. 0.1 mg in 1 ml corresponds to $0.1/180 = 0.000555555M = 555.555 \ \mu M$ 555.555 $\mu M = 555.555 \ \mu$ moles/liter

Since the reaction volume was 1 ml, the amount of glucose formed is 0.556μ moles.

Answer

Amount of Glucose = **0.556** µmoles

Deduct 0.1 mark if not written to 3 decimal points.

No double penalty, marks to be given if calculation is correct based on the answer to 1.4.2

If the value of 0.4 mg/ml is used for this calculation, the answer will be 2.222 μ mols

1.4.4 (1.5 point)

Space for calculation (write your final calculation in the answer sheet)

Given that: 1µ moles of glucose formed in 1 min corresponds to 1 U invertase.

The present reaction was carried out for 30 minutes and 0.2 ml of the stock enzyme was taken for the reaction.

 0.555μ moles of glucose was formed after a reaction time of 30 min (No double penalty, value at 1.43 will be taken for further calculation)

Thus in 1 minute $0.556/30 = 0.0185 \ \mu$ moles of glucose was formed which is equal to 0.0185U invertase enzyme activity

0.0185U invertase enzyme activty was present in 0.2 ml of stock enzyme used in the reaction

Therefore 1 ml of the stock enzyme would have (0.0185*1)/0.2 = 0.0927 = 0.093 U

Answer

Invertase activity = 0.093 U/ml

Deduct 0.25 if not rounded off correctly to 3 decimal points. If 0.973μ mole is used for calculation the answer will be 0.162

1.5.1 (1 point)

Table 1	.2:
---------	-----

Step Number	Purification step	Invertase activity (U)	Total protein (mg)	Specific activity of invertase	% recovery of invertase
1	Crude extract	13,773	13,746	1.002	
2	Ammonium sulphate precipitation	12,469	8,234	1.514	90.532
3	Affinity chromatography	11,487	836	13.740	83.402
4	Anion exchange chromatography	11,156	567	19.675	80.999

0.1 point for each correct answer of specific activity

 $0.2\ marks$ for each correct answer of % recovery

1.5.2 (0.5 point)

After affinity chromatography (step 3) there is 10 fold reduction in total protein with a minimal loss in enzyme activity.

1.5.3 (0.5 point)

Steps	2	3	4
	\times		

The difference between the enzyme activity between a step and a preceding step. After step 2 the difference is (13773-12469 = 1304).

After step 3 the difference is (12469-11487 = 982).

2. Theory 2 – Bird populations (3.25 points)

2.1. (0.25 point)

S.No.	Relationship	Yes	No
1.	Co-dominance		\times
2.	Incomplete dominance	\succ	
3.	Over dominance		\ge
4.	Dominant-recessive		\ge

No partial marking

2.2. (0.5 point)

Space for calculation

Total number of B^R alleles is 6400 + 1600 = 8000

8000 out of 10000 alleles = 0.8

Total number of B^W alleles is 400 + 1600 = 2000

2000 out of 10000 alleles = 0.2

Answers

2.2.1 Frequency of $B^{R} = 0.8$

2.2.2 Frequency of $B^W = 0.2$

Marking scheme: 0.5 point (for both correct answers no partial marking)

2.3. (0.50 points)

Statement	Yes	No
1	\succ	
2	\ge	
3	\succ	

Marking scheme: 0.50 points for all three correct answers 0.25 point for 2 correct answers 0 point for 1 correct answer

2.4. (1.5 point)

Space for calculation (write your final calculation in the answer sheet)

The reproductive population is 840.

 B^{R} = 336 + 252 = 588/840 = 0.7

 $B^w = 252/840 = 0.3$

Therefore red beak genotype $B^R B^R = 0.7 * 0.7 = 0.49 = 49$ out of 100 and

pink beak genotype $B^R B^W = 0.3 * 0.7 * 2 = 0.42 = 42$ out of 100

Answers

2.4.1. Red beak = 49

2.4.2. Pink beak = **42**

Marking scheme: 1.5 points for both correct answers 0.5 point for one correct answer

2.5. (0.5 point)

S.No.	Condition	Yes	No
1.	Occurrence of mutations		\ge
2.	No gene flow	\times	
3.	Random mating	\times	
4.	Natural selection		\succ
5.	Small population size		\succ

Marking scheme: 0.1 point for each correct answer.